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Composite as Theranostic Nanoagent for
Efficient Photodynamic Cancer Therapy
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Abstract

Photosensitizers are light-sensitive molecules that are highly hydrophobic, which poses a challenge to their use for
photodynamic therapy. Hence, considerable efforts have been made to develop carriers for the delivery of PSs. Herein, we
synthesized a new theranostic nanoagent (CQDs@PtPor) through the electrostatic interaction between the tetraplatinated
porphyrin complex (PtPor) and the negatively charged CQDs. The size and morphology of as-prepared CQDs and
CQDs@PtPor were characterized by a series of methods, such as XRD, TEM, XPS, and FTIR spectroscopy. The CQDs@PtPor
composite integrates the optical properties of CQDs and the anticancer function of porphyrin into a single unit. The
spectral results suggested the effective resonance energy transfer from CQDs to PtPor in the CQDs@PtPor composite.
Impressively, the CQDs@PtPor composite showed the stronger PDT effect than that of organic molecular PtPor,
suggesting that CQDs@PtPor is advantageous over the conventional formulation, attributable to the enhanced efficiency
of 1O2 production of PtPor by CQDs. Thus, this CQDs-based drug nanocarrier exhibited enhanced tumor-inhibition
efficacy as well as low side effects in vitro, showing significant application potential in the cancer therapy.
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Background
Photodynamic therapy (PDT) has been widely practiced
as a promising non-invasive therapeutic modality for the
treatment of many human diseases including several
conditions of the skin, age-related macular degradation,
and cancer [1]. PDT can be used alone or in combin-
ation with surgery, chemotherapy, or ionizing radiation
[2]. In photodynamic therapy, photosensitizers (PSs) are
irradiated by a specific wavelength of light, which trig-
gers the generation of reactive oxygen species from
intracellular oxygen that consequently induce cell death
and necrosis of proximal tissues [3–6]. Because photo-
sensitizers are typically harmless without light, tumor
treatment can be precisely targeted by selective illumin-
ation, thus limiting damage to surrounding healthy tis-
sues [7–9]. Activatable photosensitizers, such as
porphyrin and phthalocyanines derivatives, have been

demonstrated to possess simultaneous cancer imaging
and therapy capabilities, and some of these photosensi-
tizers have been approved for clinical use [10, 11]. How-
ever, many of them are limited because of poor water
solubility, prolonged cutaneous photosensitivity, inad-
equate selectivity, and their inability to be absorbed in
the region (> 700 nm) where the skin is most transpar-
ent, which are encountered in clinical applications of nu-
merous traditional chemicals. Therefore, numerous
approaches have been proposed to incorporate PSs into
carriers such as liposomes [12], polymeric nanoparticles
[13, 14], gold nanoparticles [15–17], carbon nanotubes
[18], graphenes [19], and carbon nanodots [20–22].
Recently, carbon quantum dots (CQDs), as a new type

of carbon nanomaterial, have attracted considerable at-
tention owing to their unique properties, such as super-
ior optical properties, excellent water solubility, low
toxicity, excellent biocompatibility, good cell permeabil-
ity, and facile preparation and modification. Thus, CQDs
have been demonstrated many promising applications in
optoelectronics, sensing [23, 24], theranostic [25–27],
and bioimaging fields. During the past few years,
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numerous methods have been developed for synthesizing
a variety of CQDs, such as hydrothermal method, micro-
wave method, thermal treatment method, and electro-
chemical method [28]. Among them, hydrothermal
methods using natural precursors to produce CQDs
have been widely reported due to their green chemistry
nature [29, 30].
Moreover, CQDs has the potential to be a loading plat-

form for various molecules due to their abundant sur-
face groups and reasonable biocompatibility [31, 32]. In
particular, when functionalized with different chemical
groups, CQDs can be engineered with various functional
elements such as drug molecules, protein, and aptamer
by covalent or noncovalent interaction for versatile bio-
medical applications [33]. For example, in 2012, Huang
et al. designed a novel theranostic platform based on
photosensitizer-conjugated carbon dots. Upon irradi-
ation, the prepared CQDs-Ce6 displayed the stronger
fluorescence emission and higher photodynamic efficacy
relative to Ce6 alone [34]. In 2014, Choi et al. developed
a similar theranostic platform based on FA-conjugated
CQDs loaded with ZnPc [3]. In the same year, Wang et
al. developed conjugates by electrostatically connecting
TMPyP with non-toxic CQDs [35]. In 2015, Beack et al.
synthesized a CQDs-Ce6-HA conjugate, which showed
much higher photodynamic effect than that of free Ce6
and CQDs-Ce6 [36].
More recently, a new tetraplatinated porphyrin complex

was reported by Naik et al. The results showed that the plat-
inum porphyrin displayed minor cytotoxicity in the dark,
but IC50 values down to 19 nM upon 420-nm laser irradi-
ation, suggesting that the tetraplatinated porphyrin complex
is a promising anticancer agent for cancer therapy [37].
However, the synthesized tetraplatinated porphyrins exhib-
ited low biocompatibility and water solubility, which limited
their clinical use. To this end, here, we develop a new thera-
nostic nanoagent (CQDs@PtPor) through the electrostatic
interaction between tetraplatinated porphyrin complex
(PtPor) and the negatively charged CQDs (Scheme 1). The
CQDs@PtPor composite integrates the optical properties of
CQDs and the anticancer function of porphyrin into a single
unit. The spectral results suggested the effective resonance
energy transfer from CQDs to PtPor in the CQDs@PtPor
composite. Impressively, the CQDs@PtPor showed the
stronger PDT effect than that of PtPor alone, which might
be assigned to the higher efficiency of 1O2 generation of
PtPor by CQDs. Moreover, small size of CQDs@PtPor might
enable to selective accumulation in tumor site through the
EPR effect. Thus, the as-prepared nanoagnet (CQDs@PtPor)
showed great application potential in the cancer therapy.

Methods
Trans-platinum diammine dichloride (transplatin) was pur-
chased from Aladdin®. 1,3-Diphenylisobenzofuran (DPBF)

was obtained from Sigma-Aldrich. All the solvents were
purchased from Tianjin Fu Chen Chemical Reagents. The
other chemicals were purchased from Sinopharm Chemical
Reagent Co., Ltd. and used as received.

Synthesis of [Trans-PtCl(NH3)2]4-5,10,15,20-Tetra(4-pyridyl)-
Porphyrin Nitrate
Transplatin (0.193 mmol, 58 mg) and silver nitrate
(0.193 mmol, 33 mg) were dissolved in 5 mL of DMF. After
string for 24 h, the white silver chloride formed was re-
moved from the resulted turbid solution through the cen-
trifugation to acquire the clear solution, which was then
added to the suspension of 5,10,15,20-Tetra(4-pyridyl)por-
phyrin (0.487 mmol, 30 mg) in 3 mL DMF. After stirring at
50 °C for 48 h, the mixture was cooled down to room
temperature. Then, 10 mL diethyl ether was added to get
the red precipitate, which was then washed with methanol,
dichloromethane, and diethylether. Finally, the sample was
dried under vacuum to acquire 81 mg product. Yield 86%.
1H NMR (400 MHz; DMSO-d6): δ 9.45 (d, 8H), 9.14 (s,
8H), 8.52 (m-pyridyl, d, 8H), 4.70 (NH3, s, 24H), − 3.04 (s,
2H); MS (ESI): m/z = 1209 [M-3(NO3)-2{PtCl(NH3)2}]

+,
1074 [M-4(NO3)-2{PtCl(NH3)2}-2NH3-Cl-2H]+, 883 [M-4
(NO3)-3{PtCl(NH3)2}]

+, 866 [M-4(NO3)-3{PtCl(NH3)2}-
NH3]

+, 812 [M-4(NO3)-3{PtCl(NH3)2}-Cl-2(NH3)]
+, 574

[M-4(NO3)-2{PtCl(NH3)2}]
2+.

Preparation of the CQDs
Generally, citric acid (0.45 g) and ethylenediamine
(500 μL) was dissolved in DI-water (10 mL). Then the
solution was transferred to a poly (tetrafluoroethylene)
(Teflon)-lined autoclave (30 mL) and heated at 200 °C
for 5 h. After the reaction, the reactors were cooled to
room temperature by water or naturally. The crude
product, which was brown-black, was purified in a cen-
trifuge for 30 min to remove agglomerated particles, and
then dialyzed against DI water to obtain the CDs.

Preparation of the CQDs@PtPor composite
The PtPor molecule, bearing four positive charges in pyri-
dine ring, can bind on the surfaces of the negatively
charged CQDs through an electrostatic interaction to ob-
tain the CQDs@PtPor composite. In general, 20 mg PtPor
dissolved in 3 mL DMSO was dispersed in 12 mL water.
The solution was added slowly into the CQDs suspension
(5 mg CQDs dissolved in 15 mL H2O) under sonication.
After stirring at room temperature for 24 h, the solution
was purified in a centrifuge for 30 min to remove agglom-
erated particles, and then dialyzed against DI water for
2 days. The aqueous solution of CQDs@PtPor was lyophi-
lized at 4 °C to yield the desired product.
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The Calculation of Quantum Yields of CQDs
The quantum yield of CQDs was measured with quinine sul-
fate as the reference (0.1 M H2SO4 aqueous solution, fluores-
cent quantum yield ∼ 54%) by the following equation:

φ ¼ φst I=Istð Þ η=ηst
� �2

Where Φ is fuorescence quantum yield, I is the slope
of curves, and η is the refractive index of solvent. The
subscript “st” refers to the reference of known quantum
yield (quinine sulfate in 0.1 M H2SO4). The absorption
was kept below 0.1 at the excitation wavelength of
360 nm to minimize reabsorption.

Singlet Oxygen Generation
A solution of the sample and 3-diphenylisobenzofuran were
irradiated in a glass cuvette (3 mL), at room temperature.
The absorption decay of DPBF at 415 nm was measured at
irradiation intervals of 3 min up to 30 min. The production

of singlet oxygen was evaluated qualitatively through the
DPBF, a singlet oxygen quencher. The percentage of the
DPBF absorption decay, proportional to the production of
1O2, was assessed by the difference between the initial ab-
sorbance and the absorbance after a given period of
irradiation. Each experiment was repeated three times.

Cytotoxicity Assay of CQDs, PtPor, and CQDs@PtPor
Human cervical carcinoma (HeLa) cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 5% fetal calf serum (FCS), 100 U/mL
penicillin, 100 μg/mL streptomycin at 37 °C, and 6%
CO2. The methylthiazolyltetrazolium (MTT) viability
assay was performed according to a standard method.
In brief, HeLa cells (3 × 103/well) were seeded in
96-well plates for 24 h prior to exposure to drugs.
The cells were treated with samples overnight in the
dark. The cytotoxicity was determined by the MTT
reduction assay. The cell monolayers were rinsed

Scheme 1 Schematic illustration of preparation of CQDs@PtPor
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twice with phosphate-buffered saline (PBS) and then
incubated with 50 μL MTT solution (0.5 mg/mL) at
37 °C for 3 h. After the media were removed, 100 μL
of DMSO was added. The solution was shook for
30 min to dissolve the formed formazan crystals in living
cells. The absorbance was measured at dual wavelength,
540 nm and 690 nm, on a Labsystem Multiskan micro-
plate reader (Merck Eurolab, Switzerland). Each dosed
concentration was performed in triplicate wells, and re-
peated twice for the MTTassay.
The photocytotoxicity of samples was assessed by a

similar protocol. In general, HeLa cells (3 × 103 per
well) were incubated in 96-well plates for 24 h prior
to their exposure to the drugs. The cells were treated
with the samples in the dark overnight. Afterwards,
the cells were exposed to a 50 W xenon lamp fitted
with a heat-isolation filter and a 500 nm long-pass
filter for 10 min. The fluence rate was 6 mW/cm2.
The cell viability was determined by the MTT reduc-
tion assay.

Bioimaging Applications of CQDs@PtPor
Cellular imaging was evaluated using a confocal laser
scanning microscope. HeLa cells (5 × 104 cells per well)
were seeded in 6-well culture plates and allowed to
adhere for 12 h. The cells were then treated with
CQDs@PtPor (0.25 mg/mL) at 37 °C for 1 h. After that,
the supernatant was carefully removed and the cells

were washed three times with PBS. Subsequently, the
slides were mounted and observed by confocal micro-
scope (Zeiss Laser Scanning Confocal Microscope;
LSM7 DUO) using ZEN 2009 software (Carl Zeiss).

Results
Preparation of CQDs@PtPor
CQDs were prepared through a one-pot hydrothermal re-
action according to the method described in literature
[38], as shown in Scheme 1. The PtPor was synthesized
through complexation of substituted transplatin with 5,
10, 15, 20-Tetra(4-pyridyl)porphyrin according to the re-
ported method [37]. Since the PtPor molecule has four
positive charges in the pyridine ring, which could bind on
the surfaces of the negatively charged CQDs through an
electrostatic interaction, yielding the desired CQDs@PtPor
composite.

Characterization of CQDs@PtPor
The transmission electron microscope (TEM) images (Fig. 1
left) show that the as-prepared CQDs and CQDs@PtPor
are homogeneously distributed with uniform sizes. The par-
ticle size shown in Fig. 1 right is narrow (1–9 nm) and the
average size, determined by histogram, is 2.5 and 7.6 nm
for CQDs and CQDs@PtPor, respectively. The mean size of
CQDs@PtPor is larger than that of CQDs, probably due to
the adsorption of PtPor molecule on the surface of CQDs
through an electrostatic interaction.

a

b

Fig. 1 TEM images (left) and corresponding size distribution histograms (right) of a CQDs and b CQDs@PtPor
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a

c d

b

Fig. 2 XRD pattern of CQDs (a). The FTIR spectrum of CQDs (b). Particle size distribution of CQDs@PtPor measured by dynamic light scattering
(c). Zeta potential of CQDs and CQDs@PtPor (d)

c d

ba

Fig. 3 XPS survey spectrum (a), and C 1s (b), N 1s (c), and O 1s (d) high-resolution XPS spectra of CQDs
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Figure 2a shows the X-ray diffraction (XRD) pattern of
the as-synthesized CQDs. The broad XRD peak of CQDs
appears around 23°, indicating the disordered structure of
CQDs [39]. The functional groups of CQDs were charac-
terized by FTIR spectroscopy. As shown in Fig. 2b, the
broad peaks from 3000 to 3500 cm−1 are attributed to
O-H and N-H stretching vibrations, indicating the pres-
ence of hydroxyl and amino groups. The peaks at 1150
and 1230 cm−1 are attributed to the C-O and C-N stretch-
ing vibrations, respectively. The amide bond is confirmed
by the typical peaks at 1678 and 1392 cm−1, attributing to
the vibrations of amide’s C=O and C-N, respectively. Fi-
nally, the peak at 1600 cm−1 is identified as C=C/C=N
bond. Comparing with the FTIR results of citric acid, the
CQDs did not display any significant characteristic ab-
sorption of citric acid (CA), indicating that CA should be
mostly carbonized during the process of hydrolysis.

Besides, a new sharp peak at 1700 cm−1, ascribed to the
amide bond was found, indicating that ethylenediamine
should be functionalized on the surface of CQDs through
the -CONH- linkage. The mean diameter and particle size
distribution of CQDs and CQDs@PtPor were determined
by DLS measurement (Additional file 1: Figure S1 and Fig.
2c). As shown in Fig. 2c, the mean size of CQDs@PtPor is
about 9.2 nm, which is consistent with the result from that
of TEM test. The zeta potential measurement was further
conducted to confirm the conjugation between CQDs and
PtPor. As shown in Fig. 3d, the zeta potential of free CQDs
is − 15.6 mV, due to the negative charges on the surface.
After conjugation with PtPor, the zeta potential of
CQDs@PtPor composite was changed to 4.5 mV, indicating
the successful coverage of CQDs by the PtPor molecules.
X-ray photoelectron spectroscopy (XPS) was performed

to further investigate the chemical composition of

c d

ba

Fig. 4 UV-Vis absorption (a) and fluorescence (b) spectra of CQDs, PtPor, and CQDs@PtPor. Fluorescence spectra (c) of CQDs with different
excitation wavelengths. Fluorescence decays (d) of CQDs and CQDs@PtPor. The concentration of samples: CQDs (5 μg/mL), CQDs@PtPor (5 μg/mL,
3 μg/mL), and PtPor (3 μg/mL)

Wu et al. Nanoscale Research Letters          (2018) 13:357 Page 6 of 10



CQDs (Fig. 3) and CQDs@PtPor (Additional file 1: Figure
S2). The survey spectrum of CQDs in Fig. 3a indicates the
existence elements on the surface are C, N, and O, with
the related signals at 535, 402, and 283 eV, respectively
[40]. The C 1s signal shown in Fig. 3b has three distinct
peaks at 284.4 eV, 286.3 eV, and 288.2 eV, which are
assigned to the C-C bond, C-O bond, and C=O bond, re-
spectively. The high-resolution XPS N 1s shown in Fig. 3c
is fitted with three peaks, with binding energies at 395.3,
399.1, and 402.2 eV, corresponding to the pyridine-like N,
pyrrolic N, and quaternary N, respectively [41]. The de-
convolution of O 1s exhibited the C-O and O-H peaks
(Fig. 3d), indicating the existence of large carboxylic
groups on the surface of CQDs.

Photophysical Properties of CQDs@PtPor
The UV-Vis absorption and fluorescence spectra were
run to investigate the photophysical properties of the
composite. As shown in Fig. 4a, the CQDs@PtPor com-
posite showed the characteristic peaks from CQDs and
porphyrin. For example, a significant absorption peak
around 360 nm was probably assigned to the n→ π*
transition from CQDs [42], while the peaks around at
425 nm, 520 nm, and 580 nm were attributed to the
soret and Q bands of porphyrin, respectively. The aque-
ous solution of CQDs shows blue emission under the
irradiation of a 365-nm ultraviolet (UV) lamp. Besides,
the CQDs exhibited the excitation-dependent PL behav-
ior, where the emission peak shifted from 460 to 552 nm
when the excitation wavelength changed from 280 to
500 nm, as shown in Fig. 4b. The fluorescence quantum
yield of the as-prepared CQDs was 36% with quinine
sulphate as a reference.

Discussion
The fluorescence resonance energy transfer (FRET) effect
in CQDs@PtPor composite could be investigated through
comparing the fluorescence intensity of CQDs@PtPor
with CQDs and PtPor. The fluorescence spectra and in-
tensities of CQDs, PtPor, and CQDs@PtPor with the same
concentration were measured under the excitation of
360 nm (Fig. 4c). Since the CQDs showed very strong ab-
sorption at 360 nm (Fig. 4a) with the PL quantum yield as
high as 36%, it emits very strong fluorescence. On the
contrary, as the absorption of PtPor at 360 nm is very low,
and its PL quantum yield is less than 1%, the PtPor ex-
hibits very weak emission. Remarkably, the intensity of
blue emission (500 nm) in CQDs@PtPor decreased obvi-
ously compared with free CQDs, while the red emission
(660 nm) is significantly enhanced relative to that of PtPor
alone, indicating the efficient energy transfer in
CQDs@PtPor composite. The fluorescence lifetime of
CQDs in CQDs@PtPor composite decreased relative to
that of free CQDs, as shown in Fig. 4d. Such an evident
decrease in the donor lifetime further indicates the effect-
ive resonance energy transfer from CQDs to PtPor in the
CQDs@PtPor composite.
Since the singlet oxygen production is a key factor in

PDT, the 1O2 generation was determined by a chemical
method using 1,3-diphenylisobenzofuran (DPBF) as the
1O2 scavenger. In general, the absorption intensity of
DPBF will decrease gradually in the presence of singlet
oxygen. Therefore, the decrease rate of the absorption in-
tensity of DPBF can be used to evaluate the relative yield
of singlet oxygen. In this experiment, CQDs (5 mg/mL),
PtPor (5 mg/mL), or CQDs@PtPor (5 mg/mL) was mixed
with DPBF (10 mM), respectively, followed by the irradi-
ation with xenon lamp. As shown in Fig. 5a, after the

ba

Fig. 5 Singlet oxygen generation of CQDs, PtPor, and CQDs@PtPor from DPBF method (a) and DCFH method (b)
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addition of CQDs, the absorption of DPBF did not show
any change with the prolongation of irradiation time, indi-
cating that CQDs had no significant singlet oxygen pro-
duction. Besides, the CQDs@PtPor composite exhibited a
very obvious degradation to DPBF, which is much higher
than that of PtPor, indicating that the 1O2 yield of porphy-
rin could be enhanced under the role of CQDs. Mean-
while, the production of 1O2 was further quantified using
the dichlorofluorescein (DCFH) reagent. The green fluor-
escence (λem = 525 nm) of DCFH is known to increase
quantitatively when it reacts with 1O2 generated from the
photosensitizers. As shown in Fig. 5b, the CQDs@PtPor
composite showed higher efficiency of 1O2 production

than that of pure PtPor. This result is highly consistent
with that obtained by the DPBF method.
The cytotoxicity of CQDs, PtPor, and CQDs@PtPor upon

HeLa cells was tested through the methylthiazolyltetrazolium
(MTT) assay. As shown in Fig. 6a, all three samples exhibited
the negligible cytotoxicity against HeLa cells after treatment
for 24 h in the dark. Over 90% of cancer cells was still alive
with their concentration increased to 50 μg/mL, suggesting
that all three samples had no adverse effect on cancer cells in
the dark. Moreover, the photocytotoxicity of three samples
was further evaluated using a similar method. As shown in
Fig. 6b, after treatment of cancer cells with CQDs@PtPor for
24 h followed by light irradiation, the cell viability decreased

Fig. 7 The confocal fluorescence microscopy images of HeLa cells under 405 nm excitation after treatment with 50 μg/mL of pure CQDs (a–c),
PtPor (d–f), and CQDs@PtPor (g–i) for 24 h. a, d, g Bright field. b, e, h The CQDs imaging channel, detected at the wavelength region of 410–
450 nm. c, f, i The PtPor imaging channel, detected with the 590 nm long pass region; (scale bar = 20 μm)

ba

Fig. 6 Dark cytotoxicity (a) and photocytotoxicity (b) of CQDs, PtPor, and CQDs@PtPor at different concentrations
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gradually with the increase of sample concentration. When
the concentration of CQDs@PtPor was 50 μg/mL, the sur-
vival rate of cancer cells was only 8%, which was apparently
lower than that of PtPor alone (18%) and CQDs (90%). That
is, the CQDs@PtPor composite exhibited stronger thera-
peutic efficacy than that of PtPor alone, suggesting that
CQDs@PtPor is advantageous over the conventional formu-
lation, which is probably ascribed to the enhanced efficiency
of singlet oxygen generation of PtPor by CQDs.
The cellular uptake of pure CQDs, PtPor, and

CQDs@PtPor was studied using a confocal laser scanning
microscope under excitation of a 405-nm laser. As shown
in Fig. 7, the CQDs@PtPor composite mainly distributed
in the cytoplasm of HeLa cells. Besides, the blue fluores-
cence imaging from CQDs is almost overlapped with the
red emission from that of PtPor in CQDs@PtPor compos-
ite, indicating that the CQDs and PtPor remained in bind-
ing state after the CQDs@PtPor composite entered into
cells. These results verify that the CQDs@PtPor composite
is stable in the cellular environment and could still per-
form fluorescence resonance energy transfer in cells.

Conclusions
A new theranostic nanoagent (CQDs@PtPor) was success-
fully designed and developed through the electrostatic
interaction between the tetraplatinated porphyrin complex
(PtPor) and the negatively charged CQDs. The as-prepared
CQDs@PtPor composite exhibited high water dispersibility,
good stability and biocompatibility, and enhanced photo-
sensitizer fluorescence detection. The PDT effect of
CQDs@PtPor was significantly enhanced relative to that of
PtPor alone, suggesting that CQDs@PtPor is advantageous
over the conventional formulation due to the enhanced effi-
ciency of 1O2 generation of PtPor by CQDs. Thus, this
CQDs-based nanoagent displayed enhanced therapeutic ef-
ficacy upon cancer cells as well as low side effects in vitro,
showing great potential for applications in the clinic to treat
patients with cancer in the near future.
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